

13 December 2017

A Privacy Act

Section 1: (Prohibition to collect personal medical information)

Offence: It is an offence to collect personal medical information.

Defence: It is a defence to the prohibition of collecting personal medical information, if an entity immediately destroys the illegally collected personal medical information before making any use of the personal medical information

Section 2: An entity is permitted to collect personal medical information if the entity acts under a Court Order authorising the collection of personal medical information.

Section 3: (Prohibition to collect personal information) It is forbidden to collect personal information unless an entity is permitted to collect personal medical information.

Offence: an entity collected personal information

Defence: an entity being permitted to collect personal medical information.

Making Sense of the Act

- Collection of medical information is forbidden.
- Destruction of the illegally collected medical information excuses the illegal collection.
- Collection of medical information is permitted if there is an authorising court order.
- Collection of personal information is forbidden.
- Collection of personal information is permitted if the collection of medical information is permitted

Are We Compliant?

No Time for Compliance

- Governatori "Thou Shalt is not You Will" showed that temporal logics are not suitable to represent norms (and the result extend to the vast majority of deontic logics)
- Governatori and Hashmi "No Time for Compliance" showed that compliance frameworks based on (linear) temporal logic are not able to handle the scenario correctly

The Regorous Approach

- 1. Annotated business process models
- 2. Proper representation of norms based on PCL (Process Compliance Logic)
- 3. Simulate execution of traces and round trips to PCL reasoner
 - 1. Determine what are the obligations in force for each state
 - 2. Determine which obligations have been fulfilled, violated, or pending
 - 3. Determine which violations have been compensated for

http://www.regorous.com

Modelling Processes

 t_1 : A, B, C, D, E, F, H

 t_2 : A, B, D, C, E, F, H

 $t_3: A, D, B, C, E, F, H$

 t_4 : A, B, C, D, E, G, H

 t_5 : A, B, D, C, E, G, H

 t_6 : A, D, B, C, E, G, H

Annotated Traces

Let Lit be a set of literals, T be the set of traces of a process and $\mathbb N$ be the set of natural numbers

State:
$$T \times \mathbb{N} \mapsto 2^{Lit}$$

The function State returns the set of literals describing "what's going on in a trace t after the execution of the n-th task in the process".

Example

Tasks

- A: "turn the light on"
- B: "check if glass is empty"
- C: "fill glass with water"
- D: "turn glass upside-down"

Propositions

- p: "the light is on"
- q: "the glass is full"

Trace 1: $\langle A, B, D \rangle$ Trace 2: $\langle A, B, C, D \rangle$

- $State(i,1) = \{ p \}, i \in \{ 1,2 \}$
- $State(1,2) = \{ p, q \}$
- $State(2,2) = \{ p, \neg q \}$
- $State(2,3) = \{ p, q \}$
- $State(1,3) = \{ p, \neg q \}$
- $State(2,4) = \{ p, \neg q \}$

Modelling Norms

Norms are modelled as if ... then ... rules

- norms are defeasible (handling exceptions)
- two types of norms
 - constitutive rules: defining terms used in a legal context

$$A_1,\ldots,A_n\Rightarrow C$$

prescriptive rules: defining "normative effects" (i.e., obligations, permissions, prohibitions . . .)

$$A_1, \dots, A_n \Rightarrow [O]C_1 \otimes [O]C_2 \otimes \dots \otimes [O]C_m$$

 $A_1, \dots, A_n \Rightarrow [P]C$

Reasoning with Norms

- 1. A is a fact; or
- 2. there is an applicable rule for A, and either
 - 1. all the rules for $\neg A$ are discarded (i.e., not applicable) or
 - 2. every applicable rule for $\neg A$ is weaker than an applicable rule for A.

The Regorous Architecture

Privacy Regorously

- collection of medical information is forbidden
 - c destruction of medical information compensates the illegal collection

$$r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$$

collection of medical information is permitted if acting under a court order

$$r_2$$
: $courtOrder \Rightarrow [P] medicalInfo$

collection of personal information is forbidden

$$r_3$$
: \Rightarrow [O] \neg personalInfo

 collection personal information is permitted if collection of medical information is permitted

$$r_4$$
: [P] medicalInfo \Rightarrow [P] personalInfo

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] $medicalInfo \Rightarrow$ [P] personalInfo

 $State(start) : \neg courtOrder$

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 $r_3: \Rightarrow [O] \neg personalInfo$

 r_4 : [P] $medicalInfo \Rightarrow$ [P] personalInfo

State(start) : ¬courtOrder

Force(T_1): $[O]\neg medicalInfo$ $[O]\neg personalInfo$

 $r_1: \Rightarrow [\mathsf{O}] \neg medicalInfo \otimes [\mathsf{O}] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 $r_3: \Rightarrow [O] \neg personalInfo$

 r_4 : [P] $medicalInfo \Rightarrow$ [P] personalInfo

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 $r_3: \Rightarrow [O] \neg personalInfo$

 r_4 : [P] medicalInfo \Rightarrow [P] personalInfo

 $State(start) : \neg courtOrder$

Force(T_1): [O] \neg medicalInfo

[O]¬personalInfo

 $State(T_1)$: medicalInfo

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : courtOrder \Rightarrow [P] medicalInfo

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] medicalInfo \Rightarrow [P] personalInfo

State(start) : ¬courtOrder

Force(T_1): $[O] \neg medicalInfo$ [O]¬personalInfo

 $State(T_1)$: medicalInfo

 $Violated(T_1) : [O] \neg medicalInfo$

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] medicalInfo \Rightarrow [P] personalInfo

 $State(start) : \neg courtOrder$

Force(T_1): [O] \neg medicalInfo [O] \neg personalInfo

[O]¬personan

 $State(T_1)$: medicalInfo

 $Violated(T_1) : [O] \neg medicalInfo$

 $Force(T_2)$: [O] destroy

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] $medicalInfo \Rightarrow$ [P] personalInfo

 $State(start) : \neg courtOrder$

Force(T_1): [O] \neg medicalInfo [O] \neg personalInfo

[O]¬personan

 $State(T_1)$: medicalInfo

 $Violated(T_1) : [O] \neg medicalInfo$

Force(T_2): [O] destroy State(T_2): personalInfo

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] medicalInfo \Rightarrow [P] personalInfo

 $State(start) : \neg courtOrder$

Force(T_1): $[O]\neg medicalInfo$

[O]¬personalInfo

 $State(T_1)$: medicalInfo

 $Violated(T_1)$: [O] $\neg medicalInfo$

Force (T_2) : [O] destroy

 $State(T_2)$: personalInfo

 $Violated(T_2): [O] \neg persoanlInfo$

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 r_4 : [P] medicalInfo \Rightarrow [P] personalInfo

 $State(start) : \neg courtOrder$

Force(T_1): $[O]\neg medicalInfo$

[O]¬personalInfo

 $State(T_1)$: medicalInfo

 $Violated(T_1)$: [O] $\neg medicalInfo$

Force (T_2) : [O] destroy

 $State(T_2)$: personalInfo

 $Violated(T_2): [O] \neg persoanlInfo$

 $State(T_3)$: destroy

 $r_1: \Rightarrow [O] \neg medicalInfo \otimes [O] destroy$

 r_2 : $courtOrder \Rightarrow [P] medicalInfo$

 r_3 : \Rightarrow [O] \neg personalInfo

 $\textit{r}_4 \colon [\mathsf{P}] \textit{medicalInfo} \Rightarrow [\mathsf{P}] \textit{personalInfo}$

 $State(start) : \neg courtOrder$

Force(T_1): $[O]\neg medicalInfo$

[O]¬personalInfo

 $State(T_1)$: medicalInfo

 $Violated(T_1) : [O] \neg medicalInfo$

Force(T_2): [O] destroy State(T_2): personalInfo

 $Violated(T_2)$: $[O] \neg persoanlInfo$

 $State(T_3)$: destroy

 $Compensated(T_3) : [O] \neg medicalInfo$

The Regorous Evaluation

Formalised Chapter 8 (Complaints) of TCPC 2012. Modelled the compliant handling/management processes of an Australian telco.

41 tasks, 12 decision points (xor), 2 loops shortest trace: 6 traces longest trace (loop): 33 tasks longest trace (no loop): 22 tasks over 1000 traces, over 25000 states

The Regorous Evaluation

DATA IIII CSIRO

TCPC 2012 Chapter 8. Contains over 100 commas, plus 120 terms (in Terms and Definitions Section).
Required 223 propositions, 176 rules.

Punctual Obligation	5	(5)
Achievement Obligation	90	(110)
Preemptive	41	(46)
Non preemptive	49	(64)
Non perdurant	5	(7)
Maintenance Obligation	11	(13)
Prohibition	7	(9)
Non perdurant	1	(4)
Permission	9	(16)
Compensation	2	(2)

Questions?

Guido Governatori guido.governatori@data61.csiro.au

References

- Silvano Colombo Tosatto, Guido Governatori and Pierre Kelsen. "Business Process Regulatory Compliance is Hard". In: *IEEE Transactions on Services Computing* 8.6 (2015), pp. 958–970. DOI: 10.1109/TSC.2014.2341236.
- Guido Governatori. "The Regorous approach to process compliance". In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop. (Adelaide, Australia, 21 Sept. 2015). IEEE Press, 2015, pp. 33–40. DOI: 10.1109/EDOC.2015.28.
- Guido Governatori. "Thou Shalt is not You Will". In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Law. (San Diego, 8–14 June 2015). Ed. by Katie Atkinson. New York: ACM, 2015, pp. 63–68. DOI: 10.1145/2746090.2746105.
- Guido Governatori and Mustafa Hashmi. "No Time for Compliance". In: 2015 IEEE 19th Enterprise Distibuted Object Computing Conference. (Adelaide, 21–25 Sept. 2015). Ed. by Sylvain Hallé and Wolfgang Mayer. IEEE, 2015, pp. 9–18. DOI: 10.1109/ED0C.2015.12.
- Guido Governatori and Shazia Sadiq. "The Journey to Business Process Compliance". In: Handbook of Research on BPM. Ed. by Jorge Cardoso and Wil van der Aalst. IGI Global, 2009. Chap. 20, pp. 426–454. eprint: http://www.governatori.net/papers/2009/handbook09journey.pdf.
- Shazia Sadiq and Guido Governatori. "Managing Regulatory Compliance in Business Processes". In: Handbook of Business Process Management 2nd edition. Ed. by Jan vom Brocke and Michael Rosemann. 2nd ed. Vol. 2. International Handbooks on Information Systems. Berlin-Heidelberg: Springer, 2015. Chap. 11, pp. 265–288. DOI: 10.1007/978-3-642-45103-4_11.